
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5681 386

Identification of Ambiguity in Requirement

Specification using Multilingual Word Sense

T. Jaison Vimalraj
1
, B. Seema

2

Teaching Fellow, Department of Information Technology, University College of Engineering, Trichy, India 1

Student, Department of Software Engineering, University College of Engineering, Trichy, India 2

Abstract: Requirements are the basic building block for development of good product. Requirement analysis is one of

the major steps to reduce complexity of developing product. Several automatic analysis methods have been proposed to

improve the quality of requirement. Currently there is no technique available to reduce ambiguity caused by Lexical,

Syntactic and Syntax ambiguities. In this paper we identify these ambiguities and reduce them to improve the quality of
requirement.

Keywords: Requirement Specification, Lexical Ambiguity, Syntactic Ambiguity, Semantic Ambiguity.

I. INTRODUCTION

Requirement gathering is one of the important steps in

software development. Requirements should be clear in

order to understand by the development team.

Development team will not spend more time in analysing

the requirement. If the requirement is not clear then the
development team will create improper outcome.

Ambiguity is the main factor which affects the quality of

the product.

Ambiguity in requirement specification will affect the

development of product. If ambiguity present in

requirement specification then that will be considered as a

bug. This will lead to poor design and performance of the

final product. If ambiguities present in requirements where

identified in requirement analysis itself there is no need to

spend lot of time and money to rectify in development

phase.

Fig 1: Distribution of bugs in different phases of

Development cycle [1]

Testing the requirement is one of the important steps in

software engineering. Requirement testing means

verification and validation of software requirements [2]. It

is important to identify and resolve software problems in
software life cycle [3].

The severity of the ambiguity problem is emphasized by

several authors [4], [5]. [6] Proposed alpha-beta procedure

to cut off the branches of requirement tree and reduce the

complexity of tree traversal.

In the rest of the paper, section II describes the

background of our project which includes related work for

requirement analysis. Section III describes the system

model for requirement analysis. Section IV describes the

conclusion and future enhancement for this paper.

II. BACKGROUND

This section explains related requirement analysis

techniques. The problem of synonyms and homonyms is

occurring in various areas of system analysis and design

including requirement engineering [4], [5]. [7] Utilize
natural language pattern for ambiguity detection. Metrics

can also used to identify and rank ambiguities [8]. [9], [10]

employ machine learning approach to find ambiguity in

requirements. Several methods can use mental capabilities

of humans to resolve these ambiguities [11], [12].

Companies need to maintain large number of process

models [13], here human not able to resolve ambiguities.

[14] Describes five major factors of requirement failure as

follows

 Failure to effectively manage conflict.

 Lack of clear statement about the design to be solved

 Too much unrecognized disambiguation

 Not knowing who is responsible for what

 Lack of awareness of requirements risk

To improve the quality of given process in information

system several authors utilize the technique of integrating

process modeling with requirement engineering [15], [16].

Natural language pattern can also be utilized for ambiguity

detection [12], [17].

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5681 387

III. PROPOSED APPROACH

This section describes the overall requirement analysis

technique to reduce ambiguity.

A. Overview

The analysis of requirement involve following four main

components

 Requirement Specification.

 Detecting Ambiguous Words

 Parts of Speech Tagging

 Multilingual Word Sense

By employing the above components we can identify three

types of ambiguity like lexical, syntactic and semantic.

Once these ambiguities detected we can able to reduce

ambiguity in overall system specification.

The following system represents the overall methodology

of ambiguity detection in requirement specification

Fig 2: overall system of ambiguity detection

Requirement specifications are the major building block of

software development so we analysing it using ambiguity

detection methodology. For that purpose we are using

multilingual word sense approach to identify sense of
words (In which sense the given word used). It started

with the first step as POS tagging which is used to

portioning the sentence into words. Ambiguity detection

involves the process of classifying ambiguity as Lexical,

Syntactic and Syntax. This methodology not removing

ambiguity completely but reducing the ambiguity.

B. Requirement Specification

The goal of requirement specification is to describe what

system to build. Requirement specifications play many

roles as follows
 Requirement Specification is the bridge between the

customer and developer which defines what to build.

 It defines constraints to design and development.

 It is the basis for estimating cost and schedule.

C. Multilingual Word Sense

It is the main component of ambiguity detection.

Ambiguous words are identified by using word sense

approach. It will evaluate different types of ambiguous

words by referring the dictionary. For example we

consider the word application which is having following

different senses

Sense-1 Application: A program which is run in computer

to perform some task.

Sense-2 Application: Medical task when antiseptic

applied to skin.

Sense-3 Application: Written request for employment or

any admission.

The above word application having more than one

meaning which is considered as synonyms and it may also

lead to ambiguity.

D. Parts of Speech Tagging
Parts of speech tagging is the important step in ambiguity

detection. POS tagging involve the process of dividing the

sentence in to following categories.

 Noun

 Adverb

 Adjective

 Verb

 Preposition

E. Ambiguities in Requirement Specification

Ambiguities should be identified in requirement
specifications. Generally ambiguities divided in to three

categories as follows

Lexical Ambiguity-It is basically defined as a word

having more than one meaning. For example we consider

the word “black” which means “dark” or it may be

“corrupted”. It may also occur when two words having

same pronunciation. For example consider word “too” and

“two” having the same sound of pronunciation but

meaning is different.

Fig 3: Hyponymy Tree

Syntactic Ambiguity-Syntactic ambiguity also called as

structural ambiguity. It means that the given sequence of

word make different grammatical structure and each one

giving different meaning. For example “Small toy shop”

which means in both senses as (small toy) shop and small

(toy shop).

Syntax Ambiguity-It occurs due to the following two
main factors

 If any sentence not end with (.).

 If user element not specified.

F. Steps for Detecting Ambiguous words

It is used to classify ambiguity based on the factors like

syntax, syntactic and lexical ambiguity.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 5, Issue 6, June 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5681 388

1. Store the multilingual word sense dictionary in the

database.

2. Analyze the requirement specification to find the

ambiguity.

3. Each line of requirements checked with the

multilingual word sense backend to find ambiguous

words.

4. The ambiguous words are then compared with POS

tagging to classify ambiguous words as lexical,

syntactic and semantic ambiguity.

5. After identifying ambiguities we have to reduce
ambiguity by replacing those ambiguous words by

alternative unambiguous words.

G. Ambiguity Detection

Ambiguity detection involve in the process of analyzing the

requirement. First we have to give the requirements as

input. After that requirements processed by POS tagging to

find ambiguous words like syntax, lexical and syntactic.

The ambiguous words are analyzed by referring the

multilingual word sense. Those ambiguous words are than

reduced by replacing those words by less ambiguous
words.

IV. CONCLUSION

The paper presents the analysis of requirements using

ambiguity detection methodology. This can be evaluated

using multilingual word sense, pos tagging. It involve in

detecting lexical, syntactic and syntax ambiguity. In future

semantic Ambiguity, vagueness ambiguity,

incompleteness, referential, Domain ambiguity and

pragmatic ambiguity can also be considered.

Semantic Ambiguity- It occurs only when the sentence

having more than one interpretation. For example “Mouse
and keyboard are parts of computer”. Here another context

is needed to know whether Mouse and Keyboard are

belong to same computer or not.

Vagueness Ambiguity- It occurs only when the given

sentence is not giving clear meaning. For example

“Software is a platform for project development”. Here

platform can define more than one meaning.

Incompleteness- It occurs only when the given sentence

not giving complete meaning. For example “Syntax error”.

Here Syntax error not defining which program having

syntax error.

Referential- It occurs only when the grammatically correct

sentence with reference which confuses the reader.

Pragmatic ambiguity- It occurs when the whole sentence

having more than one meaning.

Domain ambiguity- It occurs when the application details

are not clear.

Based on the above definition criteria conditions should be

evaluated for identifying semantic, vagueness,

incompleteness, referential, domain and pragmatic

ambiguity. Checklist can also create to reduce complication

while identifying ambiguity.

REFERENCES

[1] Gery mogyorodi, starbase corporation, “requirement based testing:

an overview”. 2001 IEEE

[2] Yonghua Li, Fengdi shu, Guoqing Wu, Zhengping liang “A

requirement engineering for embedded real time software-SREE,”

wuhan university journal of natural science, Vol. 11, No.3 , 2006,

PP. 533-538.

[3] Bary W. Boehm, TRW, “Verifying and Validating Software

requirements and design specification” , January 1984 IEEE.

[4] E.Kamsties, “Understanding ambiguity in requiremens

engineering,” in Engineering and Managing Software

Requirements, A. Aurum and C.Wohlin Eds.New York, NY, USA:

Springer, 2005, pp.245-266.

[5] D.M.Berry, E. Kamsties, and M.M. Krieger. (2003). From contract

drafting to software specification: Linguistic sources of ambiguity

A handbook [online]. Available:

http://se.uwaterloo.ca/dberry/handbook/ambiguityHandbook.pdf.

[6] Gang Liu, Shaobin Huang, Xiufeng Piao, “study on requirement

testing method based on alpha beta cutoff procedure” college of

computer science and technology, Harbin Engineering University,

Harbin, Heilongjiang, China, 2008 IEEE.

[7] B. Gleich, o. Creighton, and L. Kof, “Ambiguity detection:

Towards a tool explaining ambiguity sources,” in requirements

Engineering: Foundation for Software Quality. New York, NY,

USA: Springer, 2010, pp.218-232.

[8] Y. Wang, I.L.M Gutierrez, K. Winbladh, and H. Fang, “Äutomatic

detection of ambiguous terminology for software requirements,” in

Natural Language Processing Information Systems. NewYork,NY,

USA: Springer, 2013, pp.25-37

[9] H. Yang, A.De Roeck, and B. Nuseibeh, “ Automatic detection of

nocuous coordination in natural language requirements,” in Proc.

IEEE/ ACM Int.Conf. Autom. Softw. Eng., 2010, pp. 53-62.

[10] H. Yang, A. De Roeck, V. Gervasi, A.willis, and B. Nuseibeh,

“Analysing anaphoric ambiguity in natural language

requirements,” Requirements Eng., vol. 16, no.3, pp.163-189,2011.

[11] F. chantree, B. Nuseibeh, A. De Roeck, and A. willis, “Identifying

nocuous ambiguities in natural language requirements,” in Proc.

IEEE 14
th
 Int. Conf. Requirements Eng., 2006, pp.59-68.

[12] B. Gleich, O. Creighton, and L. Kof, “Ambiguity detection towards

a tool explaining ambiguity sources ,” in requirements engineering:

Foundation for Software quality. New York, NY, USA: Springer,

2010, pp. 218-232.

[13] M. Rosemann, “Potential pitfalls of process modeling: Part A,”

Bus. Process Manage. J., vol. 12, no. 2, pp.249-254, 2006.

[14] Gause, D.C., “User DRIVEN Design—The Luxury that has

Become a Necessity, A Workshop in Full Lifecycle Requirements

Management”, ICRE 2000 Tutorial T7, Schaumberg, IL (23 June

2000).

[15] J. Barjis, “The importance of business process modeling in software

systems design,” Sci., Technol. Eng., 2003, PP.73-87, 2008.

[16] M. Attaran, “Exploring the relationship between information

technology and business process reengineering,” Inf. Manage., vol.

41, no.5, pp.585-596, 2004.

[17] C. Denger, D.M.Berry, and E.Kamsties, “Higher quality

requirements specification through natural language patterns,” in

Proc.IEEE Int. Softw.: Sci. Comput. Program, vol. 71, no.1, pp.73-

87, 2008.

